testing
Life Ready is a mandatory 25 hour program for students in Years 11 and/or 12 in NSW public schools.
It aims to prepare and support senior students as they encounter situations related to health and safety as they become more independent and gain more responsibilities.
Life Ready focuses on offering opportunities for students to build the functional knowledge and skills for life after school.
First heading 2
The Concorde Olympus 593 Mk 610 engine, remain to this day the most efficient jet engine in the world at Mach 2, where thermal efficiency in concerned. But at lower speeds the engines consumes fuel at a massive rate.
Subjects included in this section are as follows-
Concorde engine Combustion Chamber/Turbines/Engine Control/Power Control/Mass Control/Fire Supression/Support Structure/Reheat
For Concorde to be economically viable, it needed to be able to fly reasonably long distances, and this therefore required high efficiency. For optimum supersonic flight, turbofan engines were considered, but then rejected, this was due to their large master cross-section which would cause excessive drag. Turbojets were found to be the best choice of engines for Concorde. The quieter high bypass turbofan engines such as those which are now used on the Boeing 747s could also not be used. The engine chosen was the twin spool Rolls-Royce Olympus 593, a version of this Olympus engine had originally been developed for the Vulcan bomber, and then developed into an afterburning supersonic engine for the BAC TSR-2 strike bomber and then in association with the French company Snecma Moteurs , this had been adapted for Concorde, with the final version fitted to the production aircraft known as the 593 mk610.
The Olympus 593 Mk 610 engines that were installed in all the production Concordes remain to this day, the most efficient jet engines in the world at Mach 2, as far as thermal efficiency is concerned. They may be efficient at Mach 2 and above, but at slower speeds it uses fuel in a most inefficient way, so this required a minimum amount of low flying speeds for Concorde.
The original design for the Concorde Olympus 593 reheat system was carried out by SNECMA, but due to them getting into all sorts of trouble during the project with the fuel injection system and the flame stabilisation, Rolls-Royce got involved and baled them out, and the re-heat system became a Rolls-Royce/ SNECMA design. (The core engine was a 100% Rolls Royce design, with no French input whatsoever. However some engine sub-assembles were manufactured by SNECMA).
Second heading 2
The Concorde Olympus 593 Mk 610 engine, remain to this day the most efficient jet engine in the world at Mach 2, where thermal efficiency in concerned. But at lower speeds the engines consumes fuel at a massive rate.
Subjects included in this section are as follows-
Concorde engine Combustion Chamber/Turbines/Engine Control/Power Control/Mass Control/Fire Supression/Support Structure/Reheat
For Concorde to be economically viable, it needed to be able to fly reasonably long distances, and this therefore required high efficiency. For optimum supersonic flight, turbofan engines were considered, but then rejected, this was due to their large master cross-section which would cause excessive drag. Turbojets were found to be the best choice of engines for Concorde. The quieter high bypass turbofan engines such as those which are now used on the Boeing 747s could also not be used. The engine chosen was the twin spool Rolls-Royce Olympus 593, a version of this Olympus engine had originally been developed for the Vulcan bomber, and then developed into an afterburning supersonic engine for the BAC TSR-2 strike bomber and then in association with the French company Snecma Moteurs , this had been adapted for Concorde, with the final version fitted to the production aircraft known as the 593 mk610.
The Olympus 593 Mk 610 engines that were installed in all the production Concordes remain to this day, the most efficient jet engines in the world at Mach 2, as far as thermal efficiency is concerned. They may be efficient at Mach 2 and above, but at slower speeds it uses fuel in a most inefficient way, so this required a minimum amount of low flying speeds for Concorde.
The original design for the Concorde Olympus 593 reheat system was carried out by SNECMA, but due to them getting into all sorts of trouble during the project with the fuel injection system and the flame stabilisation, Rolls-Royce got involved and baled them out, and the re-heat system became a Rolls-Royce/ SNECMA design. (The core engine was a 100% Rolls Royce design, with no French input whatsoever. However some engine sub-assembles were manufactured by SNECMA).
Third Heading 2
The Concorde Olympus 593 Mk 610 engine, remain to this day the most efficient jet engine in the world at Mach 2, where thermal efficiency in concerned. But at lower speeds the engines consumes fuel at a massive rate.
Subjects included in this section are as follows-
Concorde engine Combustion Chamber/Turbines/Engine Control/Power Control/Mass Control/Fire Supression/Support Structure/Reheat
For Concorde to be economically viable, it needed to be able to fly reasonably long distances, and this therefore required high efficiency. For optimum supersonic flight, turbofan engines were considered, but then rejected, this was due to their large master cross-section which would cause excessive drag. Turbojets were found to be the best choice of engines for Concorde. The quieter high bypass turbofan engines such as those which are now used on the Boeing 747s could also not be used. The engine chosen was the twin spool Rolls-Royce Olympus 593, a version of this Olympus engine had originally been developed for the Vulcan bomber, and then developed into an afterburning supersonic engine for the BAC TSR-2 strike bomber and then in association with the French company Snecma Moteurs , this had been adapted for Concorde, with the final version fitted to the production aircraft known as the 593 mk610.
The Olympus 593 Mk 610 engines that were installed in all the production Concordes remain to this day, the most efficient jet engines in the world at Mach 2, as far as thermal efficiency is concerned. They may be efficient at Mach 2 and above, but at slower speeds it uses fuel in a most inefficient way, so this required a minimum amount of low flying speeds for Concorde.
The original design for the Concorde Olympus 593 reheat system was carried out by SNECMA, but due to them getting into all sorts of trouble during the project with the fuel injection system and the flame stabilisation, Rolls-Royce got involved and baled them out, and the re-heat system became a Rolls-Royce/ SNECMA design. (The core engine was a 100% Rolls Royce design, with no French input whatsoever. However some engine sub-assembles were manufactured by SNECMA).
Third Heading 4
The Concorde Olympus 593 Mk 610 engine, remain to this day the most efficient jet engine in the world at Mach 2, where thermal efficiency in concerned. But at lower speeds the engines consumes fuel at a massive rate.
Subjects included in this section are as follows-
Concorde engine Combustion Chamber/Turbines/Engine Control/Power Control/Mass Control/Fire Supression/Support Structure/Reheat
For Concorde to be economically viable, it needed to be able to fly reasonably long distances, and this therefore required high efficiency. For optimum supersonic flight, turbofan engines were considered, but then rejected, this was due to their large master cross-section which would cause excessive drag. Turbojets were found to be the best choice of engines for Concorde. The quieter high bypass turbofan engines such as those which are now used on the Boeing 747s could also not be used. The engine chosen was the twin spool Rolls-Royce Olympus 593, a version of this Olympus engine had originally been developed for the Vulcan bomber, and then developed into an afterburning supersonic engine for the BAC TSR-2 strike bomber and then in association with the French company Snecma Moteurs , this had been adapted for Concorde, with the final version fitted to the production aircraft known as the 593 mk610.
The Olympus 593 Mk 610 engines that were installed in all the production Concordes remain to this day, the most efficient jet engines in the world at Mach 2, as far as thermal efficiency is concerned. They may be efficient at Mach 2 and above, but at slower speeds it uses fuel in a most inefficient way, so this required a minimum amount of low flying speeds for Concorde.
The original design for the Concorde Olympus 593 reheat system was carried out by SNECMA, but due to them getting into all sorts of trouble during the project with the fuel injection system and the flame stabilisation, Rolls-Royce got involved and baled them out, and the re-heat system became a Rolls-Royce/ SNECMA design. (The core engine was a 100% Rolls Royce design, with no French input whatsoever. However some engine sub-assembles were manufactured by SNECMA).